Missing Data Imputation in Multivariate Time Series Data

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Hot Deck imputation for multivariate missing data

Fractional hot deck imputation, considered in Fuller and Kim (2005), is extended to multivariate missing data. The joint distribution of the study items is nonparametrically estimated using a discrete approximation, where the discrete transformation also serves to define imputation cells. The procedure first estimates the probabilities for the cells and then imputes real observations for missin...

متن کامل

Time series cluster kernel for learning similarities between multivariate time series with missing data

Similarity-based approaches represent a promising direction for time series analysis. However, many such methods rely on parameter tuning and have shortcomings if the time series are multivariate (MTS) and contain missing data. In this paper, we address these challenges within the powerful context of kernel methods by proposing the robust time series cluster kernel (TCK). The approach taken is ...

متن کامل

Multiple Imputation for Missing Data

Multiple imputation provides a useful strategy for dealing with data sets with missing values. Instead of filling in a single value for each missing value, Rubin’s (1987) multiple imputation procedure replaces each missing value with a set of plausible values that represent the uncertainty about the right value to impute. These multiply imputed data sets are then analyzed by using standard proc...

متن کامل

Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation.

Statistical analysis in epidemiologic studies is often hindered by missing data, and multiple imputation is increasingly being used to handle this problem. In a simulation study, the authors compared 2 methods for imputation that are widely available in standard software: fully conditional specification (FCS) or "chained equations" and multivariate normal imputation (MVNI). The authors created ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ?????? ????? ? ??????

سال: 2022

ISSN: ['2538-4201', '2538-421X']

DOI: https://doi.org/10.52547/jsdp.19.2.39